首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3420篇
  免费   197篇
  国内免费   125篇
  2024年   1篇
  2023年   42篇
  2022年   34篇
  2021年   82篇
  2020年   72篇
  2019年   71篇
  2018年   77篇
  2017年   56篇
  2016年   78篇
  2015年   118篇
  2014年   185篇
  2013年   196篇
  2012年   144篇
  2011年   189篇
  2010年   148篇
  2009年   176篇
  2008年   194篇
  2007年   186篇
  2006年   200篇
  2005年   163篇
  2004年   140篇
  2003年   123篇
  2002年   99篇
  2001年   96篇
  2000年   86篇
  1999年   69篇
  1998年   100篇
  1997年   59篇
  1996年   67篇
  1995年   69篇
  1994年   57篇
  1993年   73篇
  1992年   45篇
  1991年   52篇
  1990年   45篇
  1989年   30篇
  1988年   19篇
  1987年   24篇
  1986年   14篇
  1985年   14篇
  1984年   13篇
  1983年   11篇
  1982年   9篇
  1981年   5篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
排序方式: 共有3742条查询结果,搜索用时 15 毫秒
991.
Sexual dimorphisms are primary regulated by sex‐biased gene expression. In the present study, using real‐time polymerase chain reaction, we determined the expression profiles of nine genes associated with development, metabolism, stress, and defense throughout adulthood of the Indian meal moth Plodia interpunctella, a global pest of stored food products. Most genes were differentially expressed in a sex‐biased manner during the adult lifespan of the moth. Expression of the heat shock protein genes hsp25 and hsp90 and the antioxidant gene thioredoxin peroxidase (Tpx) was highly female biased, whereas the expression of a gene related to host development (ecdysone receptor [EcR]) and two genes associated with immunity (β‐glycan recognition protein [βgrp] and prophenoloxidase [ProPO]) was male biased. In contrast, the expression of hsp70, glucose‐regulated protein 78 (grp78) and ultraspiracle (USP) was not sex biased. The results of the present study provide important insights into the role of sex‐biased genes in the physiology and behavior of P. interpunctella.  相似文献   
992.
993.
994.
995.
996.
In this study, we investigate the electrohydrodynamic and nanomechanical characteristics of two Saccharomyces cerevisiae yeast strains, a wild-type (WT) strain and a strain overexpressing (OE) Hsp12p, in the presence and absence of hydrophobic Congo red compound. By combining these two advanced biophysical methods, we demonstrate that Hsp12p proteins are mostly located within a thin layer ( c . 10 nm thick) positioned at the external side of the cell wall. However, this Hsp12p-enriched layer does not prevent Congo red from entering the cell wall and from interacting with the chitin therein. The entrance of Congo red within the cell wall is reflected in an increase of the turgor pressure for the OE strain and a decrease of that for the WT strain. It is shown that these opposite trends are consistent with significant modulations of the water content within the cell wall from/to the cytoplasm. These are the result of changes in the hydrophobicity/hydrophilicity balance, as governed by the intertwined local concentration variations of Congo red and Hsp12p across the cell wall. In particular, the decrease of the turgor pressure in the case of WT strain upon addition of Congo red is shown to be consistent with an upregulation of Hsp12p in the close vicinity of the plasma membrane.  相似文献   
997.
Three extremely diverse groups of unicellular eukaryotes comprise the Alveolata: ciliates, dinoflagellates, and apicomplexans. The vast phenotypic distances between the three groups along with the enigmatic distribution of plastids and the economic and medical importance of several representative species (e.g. Plasmodium, Toxoplasma, Perkinsus, and Pfiesteria) have stimulated a great deal of speculation on the early evolutionary history of alveolates. A robust phylogenetic framework for alveolate diversity will provide the context necessary for understanding the basic biological properties of the group and for developing appropriate strategies for management. We addressed the earliest stages of alveolate evolution by sequencing heat shock protein 90 (hsp90) genes from several ciliates, apicomplexans, and dinoflagellates, including key species thought to represent early diverging lineages: Oxyrrhis marina, Perkinsus marinus, Cryptosporidium parvum, and the eugregarine Monocystis agilis. Moreover, by sequencing the actin gene from Monocystis, we were able to examine the sister relationship between gregarines and cryptosporidians with a three‐protein concatenated data set (hsp90, actin, and β‐tubulin). Phylogenetic analyses of the hsp90 data set provided a robust topology for alveolate relationships: Alveolates were monophyletic and apicomplexans and dinoflagellates formed sister groups to the exclusion of ciliates. Oxyrrhis formed the earliest diverging sister lineage to the “core” dinoflagellates, and Perkinsus formed the earliest diverging sister lineage to the Oxyrrhis–dinoflagellate clade. This topology was strongly supported inall analyses and by a unique indel shared by Oxyrrhis and dinoflagellates. A sister relationship between Cryptosporidium and Monocystis was weakly supported by the hsp90 data set but strongly supported by the three‐protein concatenated data set.  相似文献   
998.
The kinetoplastids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi are causative agents of a diverse spectrum of human diseases: leishmaniasis, sleeping sickness and Chagas' disease, respectively. These protozoa possess digenetic life cycles that involve development in mammalian and insect hosts. It is generally accepted that temperature is a triggering factor of the developmental programme allowing the adaptation of the parasite to the mammalian conditions. The heat shock response is a general homeostatic mechanism that protects cells from the deleterious effects of environmental stresses, such as heat. This response is universal and includes the synthesis of the heat-shock proteins (HSPs). In this review, we summarize the salient features of the different HSP families and describe their main cellular functions. In parallel, we analyse the composition of these families in kinetoplastids according to literature data and our understanding of genome sequence data. The genome sequences of these parasites have been recently completed. The HSP families described here are: HSP110, HSP104, group I chaperonins, HSP90, HSP70, HSP40 and small HSPs. All these families are widely represented in these parasites. In particular, kinetoplastids possess an unprecedented number of members of the HSP70, HSP60 and HSP40 families, suggesting key roles for these HSPs in their biology.  相似文献   
999.
1000.
The effect of overproducing each of the three small heat shock proteins (Hsp; Hsp 18.5, Hsp 18.55, and Hsp 19.3) was investigated in Lactobacillus plantarum strain WCFS1. Overproduction of the three genes, hsp 18.5, hsp 18.55, and hsp 19.3, translationally fused to the start codon of the ldhL gene yielded a protein of approximately 19 kDa, as estimated from Tricine sodium dodecyl sulfate–polyacrylamide gel electrophoresis in agreement with the predicted molecular weight of small Hsps. Small Hsp overproduction alleviated the reduction in growth rate triggered by exposing exponentially growing cells to heat shock (37 or 40°C) and cold shock (12°C). Moreover, overproduction of Hsp 18.55 and Hsp 19.3 led to an enhanced survival in the presence of butanol (1% v/v) or ethanol (12% v/v) treatment suggesting a potential role of L. plantarum small Hsps in solvent tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号